Microtubules regulate local Ca2+ spiking in secretory epithelial cells.
نویسندگان
چکیده
The role of the cytoskeleton in regulating Ca(2+) release has been explored in epithelial cells. Trains of local Ca(2+) spikes were elicited in pancreatic acinar cells by infusion of inositol trisphosphate through a whole cell patch pipette, and the Ca(2+)-dependent Cl(-) current spikes were recorded. The spikes were only transiently inhibited by cytochalasin B, an agent that acts on microfilaments. In contrast, nocodazole (5-100 micrometer), an agent that disrupts the microtubular network, dose-dependently reduced spike frequency and decreased spike amplitude leading to total blockade of the response. Consistent with an effect of microtubular disruption, colchicine also inhibited spiking but neither Me(2)SO nor beta-lumicolchicine, an inactive analogue of colchicine, had any effect. The microtubule-stabilizing agent, taxol, also inhibited spiking. The nocodazole effects were not due to complete loss of function of the Ca(2+) signaling apparatus, because supramaximal carbachol concentrations were still able to mobilize a Ca(2+) response. Finally, as visualized by 2-photon excitation microscopy of ER-Tracker, nocodazole promoted a loss of the endoplasmic reticulum in the secretory pole region. We conclude that microtubules specifically maintain localized Ca(2+) spikes at least in part because of the local positioning of the endoplasmic reticulum.
منابع مشابه
Transition from metaphase to anaphase is accompanied by local changes in cytoplasmic free calcium in Pt K2 kidney epithelial cells.
We have used a Ca2+-sensitive dye, fura-2, to investigate the role of Ca2+ during mitosis in Pt K2 epithelial cells. The concentration of cytoplasmic free calcium, [Ca2+]i, increased 2-fold between metaphase and anaphase. Digital image analysis revealed two patterns of [Ca2+]i localization during anaphase. In half of the anaphase cells, the increase in [Ca2+]i was greatest in the region near th...
متن کاملWNK3 positively regulates epithelial calcium channels TRPV5 and TRPV6 via a kinase-dependent pathway.
WNK3, a member of the With No Lysine (K) family of protein serine/threonine kinases, was shown to regulate members of the SLC12A family of cation-chloride cotransporters and the renal outer medullary K+ channel ROMK and Cl(-) channel SLC26A9. To evaluate the effect of WNK3 on TRPV5, a renal epithelial Ca2+ channel that serves as a gatekeeper for active Ca2+ reabsorption, WNK3 and TRPV5 were coe...
متن کاملRegulation of exocytosis by purinergic receptors in pancreatic duct epithelial cells.
In epithelial cells, several intracellular signals regulate the secretion of large molecules such as mucin via exocytosis and the transport of ions through channels and transporters. Using carbon fiber amperometry, we previously reported that exocytosis of secretory granules in dog pancreatic duct epithelial cells (PDEC) can be stimulated by pharmacological activation of cAMP-dependent protein ...
متن کاملInvestigation of the role of microtubules in protein secretion from lactating mouse mammary epithelial cells.
Disruption of microtubules has been shown to reduce protein secretion from lactating mammary epithelial cells. To investigate the involvement of microtubules in the secretory pathway in these cells we have examined the effect of nocodazole on protein secretion from mammary epithelial cells derived from the lactating mouse. Mouse mammary cells have extensive microtubule networks and 85% of their...
متن کاملIntrinsic microtubule stability in interphase cells
Interphase microtubule arrays are dynamic in intact cells under normal conditions and for this reason they are currently assumed to be composed of polymers that are intrinsically labile, with dynamics that correspond to the behavior of microtubules assembled in vitro from purified tubulin preparations. Here, we propose that this apparent lability is due to the activity of regulatory effectors t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 275 29 شماره
صفحات -
تاریخ انتشار 2000